Welcome to Vertiport Autonomy's documentation! =============================================== Vertiport Autonomy is a Deep Reinforcement Learning platform for autonomous vertiport coordination. This project implements a sophisticated simulation environment for training and evaluating autonomous agents that manage drone traffic at vertiports (vertical take-off and landing ports). .. toctree:: :maxdepth: 2 :caption: Contents: api/modules tutorials/index Features -------- * **Deep Reinforcement Learning Environment**: Built on Gymnasium API with PPO agent support * **Realistic Simulation**: Discrete-time vertiport simulation with formal state machines * **Curriculum Learning**: Progressive training strategy for complex scenarios * **Comprehensive Evaluation**: Built-in metrics and performance analysis framework * **Configurable Scenarios**: YAML-based configuration system with Pydantic validation Quick Start ----------- Install the package: .. code-block:: bash pip install -e . Run a basic evaluation: .. code-block:: bash python scripts/evaluate.py --agent heuristic --scenario scenarios/easy_world.yaml --episodes 10 Train a new agent: .. code-block:: bash python scripts/train.py --scenario scenarios/easy_world.yaml --timesteps 10000 Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`